4.6 Article

Diurnal equilibrium convection and land surface-atmosphere interactions in an idealized cloud-resolving model

Journal

QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY
Volume 138, Issue 667, Pages 1526-1539

Publisher

WILEY
DOI: 10.1002/qj.1892

Keywords

convection; cloud-resolving modelling; land-surface atmosphere interactions

Funding

  1. Swiss National Science Foundation through NCCR Climate
  2. CCLM model

Ask authors/readers for more resources

The influence of soil moisture and atmospheric stability on mid-latitude diurnal convection and landatmosphere exchange is investigated in an idealized cloud-resolving modelling framework using a full set of parametrization schemes. In each member of a series of month-long experiments, the model attains a state where deep, precipitating convection is triggered every day. This state is referred to as equilibrium diurnal convection. The triggering occurs via different mechanisms depending on the atmospheresoil setting. In our framework latent heat fluxes comprise the primary control over the precipitation amounts. We find that evaporation is regulated by the availability of energy on the one hand and the availability of soil moisture and the near-surface saturation deficit of the atmosphere on the other. Increased cloud cover over wet soils reduces net short-wave radiation but increases net long-wave radiation, leading to a near-compensation of the two effects on available energy. Increased boundary layer moisture is removed by deep convection, thus increasing the near-surface saturation deficit and preventing a negative feedback of boundary layer moisture content on the latent heat fluxes. We also find that there is a spatial correlation between soil moisture and precipitation anomalies, suggesting that the soil moisture precipitation feedback acts on a scale of 1050 km. Copyright (c) 2012 Royal Meteorological Society

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available