4.6 Article

Co3O4 particles grown over nanocrystalline CeO2: influence of precipitation agents and calcination temperature on the catalytic activity for methane oxidation

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 5, Issue 3, Pages 1888-1901

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cy01158a

Keywords

-

Funding

  1. Network of Excellence IDECAT (Integrated Design of Catalytic Nanomaterials for a Sustainable Production)
  2. COST Action [CM 1104]
  3. China Scholarship Council
  4. Ministry of Education, P.R. China

Ask authors/readers for more resources

Crystalline cobalt oxides were prepared by a precipitation method using three different precipitation agents, (NH4)(2)CO3, Na2CO3 and CO(NH2)(2). Cobalt oxide nanoparticles corresponding to a Co3O4 loading of 30 wt% were also deposited over high-surface area nanocrystalline ceria by the same precipitation agents. The effect of calcination temperature, 350 or 650 degrees C, on the morphological and structural properties was evaluated. Characterization by BET, XRD, SEM, TEM, Raman spectroscopy, H-2-TPR, XPS and NH3-TPD was performed and the catalytic properties were explored in the methane oxidation reaction. The nature of the precipitation agent strongly influenced the textural properties of Co3O4 and the Co3O4-CeO2 interface. The best control of the particle size was achieved by using CO(NH2)(2) that produced small and regular crystallites of Co3O4 homogeneously deposited over the CeO2 surface. Such a Co3O4-CeO2 system precipitated by urea showed enhanced low-temperature reducibility and high surface Co3+ concentration, which were identified as the key factors for promoting methane oxidation at low temperature. Moreover, the synergic effect of cobalt oxide and nanocrystalline ceria produced stable full conversion of methane in the entire range of investigated temperature, up to 700-800 degrees C, at which Co3O4 deactivation usually occurs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available