4.6 Article

Soluble polymer-supported hindered phosphine ligands for palladium-catalyzed aryl amination

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 5, Issue 4, Pages 2378-2383

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4cy01498g

Keywords

-

Funding

  1. R. A. Welch Foundation [A-0639)]
  2. Qatar National Research Foundation [4-081-1-016]

Ask authors/readers for more resources

Strategies for synthesis of more effective soluble supported ligands for phosphine-ligated Pd(0) cross coupling catalysts have been explored. Reversible addition-fragmentation chain transfer (RAFT) polymerization has been used to prepare alkane-soluble poly(4-alkylstyrene)-bound phosphine ligands. 4-tert-Butylstyrene and 4-dodecylstyrene were copolymerized with ca. 7 mol% of 4-chloromethylstyrene or a 4-diphenylphosphinestyrene monomer using RAFT chemistry to afford poly(tert-butylstyrene-co-4-dodecylstyrene) copolymers. Polymers with chloromethyl groups were allowed to react with the phenolic group of a hindered dicyclohexylbiarylphosphine ligand. This hindered polymer-bound phosphine formed reactive Pd complexes useful in haloarene amine couplings. All aryl halide amination reactions had Pd leaching that was typically <0.1% of the charged Pd with one example having only 0.02% Pd leaching. These Pd complexes of poly(4-alkylstyrene)-bound phosphines were also compared to similar hindered phosphine complexes formed with a polyisobutylene (PIB), whose terminus was also converted into a dicyclohexylbiarylphosphine ligand. Palladium catalysts ligated by these hindered biarylphosphines on poly(4-alkylstyrene) and PIB-bound both were recyclable in the absence of oxygen, had similar activity, and very low Pd leaching.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available