4.6 Article

Hydrogen production by the water-gas shift reaction using CuNi/Fe2O3 catalyst

Journal

CATALYSIS SCIENCE & TECHNOLOGY
Volume 5, Issue 5, Pages 2752-2760

Publisher

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5cy00173k

Keywords

-

Funding

  1. Basic Science Research Program through the National Research Foundation of Korea (NRF) - Ministry of Science, ICT and Future Planning [2013R1A1A1A05007370]

Ask authors/readers for more resources

Incorporation of both Cu and Ni together into the crystalline lattice of Fe2O3 results in a significant increase in the catalytic activity and also suppresses the methanation reaction in the high-temperature water-gas shift (HT-WGS) reaction. CuNi/Fe2O3 exhibited the highest CO conversion with negligible CH4 selectivity at the extremely high GHSV of 101 000 h(-1) (X-CO = 85% at 400 degrees C). The high activity of CuNi/Fe2O3 catalyst is mainly due to the increase in the lattice strain and the decrease in the binding energy of lattice oxygen. In addition, X-ray photoelectron spectroscopy (XPS) results provide direct evidence for the formation of surface CuNi alloy, which plays a critical role in suppressing the methanation reaction. The detailed characterization by powder X-ray diffraction (XRD), XPS, BET, and H-2 temperature-programmed reduction (TPR) techniques was used to understand the role of dopants on host iron oxides in the enhancement of catalytic activity for HT-WGS reaction.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available