4.3 Article

Identification and characterization of a novel variant of the human P2X7 receptor resulting in gain of function

Journal

PURINERGIC SIGNALLING
Volume 6, Issue 1, Pages 31-45

Publisher

SPRINGER
DOI: 10.1007/s11302-009-9168-9

Keywords

P2X(7) receptor; Single-nucleotide polymorphism (SNP); Gain-of-function; Loss-of-function; Dye uptake; Pore formation; Adenosine triphosphate; Site-directed mutagenesis

Funding

  1. NIH [A157168, CA73743]

Ask authors/readers for more resources

The P2X(7) receptor exhibits significant allelic polymorphism in humans, with both loss and gain of function variants potentially impacting on a variety of infectious and inflammatory disorders. At least five loss-of-function polymorphisms (G150R, R307Q, T357S, E496A, and I568N) and two gain-of-function polymorphisms (H155Y and Q460R) have been identified and characterized to date. In this study, we used RT-PCR cloning to isolate and characterize P2X(7) cDNA clones from human PBMCs and THP-1 cells. A previously unreported variant with substitutions of V80M and A166G was identified. When expressed in HEK293 cells, this variant exhibited heightened sensitivity to the P2X(7) agonist (BzATP) relative to the most frequent allele, as shown by pore formation measured by fluorescent dye uptake into cells. Mutational analyses showed that A166G alteration was critical for the gain-of-function change, while V80M was not. Full-length variants with multiple previously identified nonsynonymous SNPs (H155Y, H270R, A348T, and E496A) were also identified. Distinct functional phenotypes of the P2X(7) variants or mutants constructed with multiple polymorphisms were observed. Gain-of-function variations (A166G or H155Y) could not rescue the loss-of-function E496A polymorphism. Synergistic effects of the gain-of-function variations were also observed. We also identified the A348T alteration as a weak gain-of-function variant. Thus, these results identify the new gain-of-function variant A166G and demonstrate that multiple-gene polymorphisms contribute to functional phenotypes of the human P2X(7) receptor. Furthermore, the results demonstrate that the C-terminal of the cysteine-rich domain 1 of P2X(7) is critical for regulation of P2X(7)-mediated pore formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available