4.3 Article Proceedings Paper

Microwave-assisted modifications of polysaccharides

Journal

PURE AND APPLIED CHEMISTRY
Volume 86, Issue 11, Pages 1695-1706

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1515/pac-2014-0711

Keywords

grafting; modifications; microwave chemistry; POC-2014; polysaccharides

Ask authors/readers for more resources

Polysaccharides are a natural and renewable feed stock for synthesizing high performance macromolecular materials. However, their structure does not allow reaching all properties required for specific applications and chemical modifications are necessary to reach such objectives. Despite the use of natural polymers, the chemistry and processes employed are not environment-friendly due to the nature of chemicals, solvents or because the conventional chemical process are energy-consuming. On the other hand, microwave assisted processes were developed in organic chemistry since the 1980s and more recently for polymer chemistry (polymer formation and modification). Within the chemistry of natural polymers, the use of microwave irradiation has been exploited in the past two decades to alleviate limitations in the synthesis of graft modified polysaccharide materials. Microwave heating is described as more homogeneous, selective and efficient as compared to conventional heating resulting in faster reactions with fewer or no side products as example. Different results reported within the recent literature will be discussed considering the role of microwave irradiation and its consequence on the reaction parameters and properties of final materials. Grafting of polysaccharides, specific modification of polysaccharides or fibers particularly for preparing smart textiles or medical products as well as reactions of polysaccharides to valuable bio-platform molecule will be discussed.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available