4.3 Article Proceedings Paper

Biotransformation of metal(loid)s by intestinal microorganisms

Journal

PURE AND APPLIED CHEMISTRY
Volume 82, Issue 2, Pages 409-427

Publisher

WALTER DE GRUYTER GMBH
DOI: 10.1351/PAC-CON-09-06-08

Keywords

colon microflora; biomethylation; metals; metalloids; risk assessment; speciation; thiolation; volatilization

Ask authors/readers for more resources

Many metals and metalloids undergo complex biotransformation processes by microorganisms in the environment, namely, Ge, As, Se, Cd, In, Sn, Sb, Te, Hg, Tl, Pb, Bi, and Po. Though the human intestine harbors a highly diverse and metabolically active microbial community, the knowledge on metal(loid) biotransformation by gut microbiota is limited. Microbial metal(loid) metabolism in the gut is highly relevant when assessing health risks from oral exposure, as both the bioavailability and the toxicity of the ingested compound can be modulated. This review gathers and compares a broad selection of scientific studies on the intestinal biotransformation of metal(loid)s. It can be inferred that metal(loid) biotransformation by intestinal microbiota is a common process, resulting in both beneficial and adverse toxicological effects. Whereas for Hg the intestinal demethylation of methylmercury results in enhanced elimination, highly bioavailable and toxic arsenic and Bi species are formed by intestinal microorganisms. In either case, we conclude that the gut microbial potency should be considered to be taken up in toxicokinetic studies and models for assessing the health risks of oral metal(loid) exposure. This will allow the relevance of intestinal metal(loid) biotransformation to be assessed for human health risks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available