4.3 Article

In vivo efficacy of KRP-109, a novel elastase inhibitor, in a murine model of severe pneumococcal pneumonia

Journal

PULMONARY PHARMACOLOGY & THERAPEUTICS
Volume 24, Issue 6, Pages 660-665

Publisher

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pupt.2011.08.001

Keywords

Streptococcus pneumonia; Neutrophil elastase; Immunomodulation therapy

Funding

  1. Kyorin Pharmaceutical Co., Ltd, Tokyo, Japan

Ask authors/readers for more resources

KRP-109 is a novel specific inhibitor of neutrophil elastase (NE). Various studies suggest that NE inhibitors reduce lung injury associated with systemic inflammatory response syndrome (SIRS). In this study, the efficacy of KRP-109 was examined using a murine model of severe pneumonia induced by Streptococcus pneumoniae (S. pneumoniae). Female mice (CBA/J, aged 5 weeks) were inoculated intranasally with penicillin-susceptible S. pneumoniae (ATCC49619 strain, 2.5 x 10(8) CFU/mouse). KRP-109 (30 or 50 mg/kg) or physiological saline as a control was administered intraperitoneally every 8 h beginning at 8 h after inoculation, and survival rate was evaluated over 7 days. Histopathological and bacteriological analyses of the lung, and bronchoalveolar lavage were performed at 48 h post-infection. The mice treated with KRP-109 (KRP-109 mice) tended to have higher survival rate than those given saline. The lung tissues of the KRP-109 mice had few neutrophils in the alveolar walls and less inflammation. Furthermore, KRP-109 decreased significantly total cell and neutrophil counts, and cytokine levels (interleukin 1 beta and macrophage inflammatory protein 2) in bronchoalveolar lavage fluid. Viable bacterial numbers in lung were not influenced by treatment of KRP-109. The present results indicate that KRP-109 reduces lung inflammation in a murine model, and that KRP-109 may be useful for the treatment of patients with severe pneumonia. (C) 2011 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available