4.4 Article

Profiling of behavioral changes and hippocampal gene expression in mice chronically treated with the SSRI paroxetine

Journal

PSYCHOPHARMACOLOGY
Volume 200, Issue 4, Pages 557-572

Publisher

SPRINGER
DOI: 10.1007/s00213-008-1232-6

Keywords

antidepressant; behavior; hippocampus; microarray; neurogenesis; neuroplasiticity

Funding

  1. National Genome Research Network (NGFN), Frderkennzeichen [01GS0481]

Ask authors/readers for more resources

Introduction Monoamine-based antidepressants inhibit neurotransmitter reuptake within short time. However, it commonly takes several weeks until clinical symptoms start to resolve-indicating the involvement of effects distant from reuptake inhibition. Objective To unravel other mechanisms involved in drug action, a reverse pharmacological approach was applied to determine antidepressant-induced alterations of hippocampal gene expression. Materiasl and methods The behavioral response to long-term paroxetine administration of male DBA/2Ola mice was assessed by the forced swim test (FST), the modified hole board (mHB), and the dark/light box. Hippocampi of test-naive mice were dissected, and changes in gene expression by paroxetine treatment were investigated by means of microarray technology. Results and discussion Robust effects of paroxetine on passive stress-coping behavior in the FST were observed. Furthermore, anxiolytic properties of long-term antidepressant treatment could be identified in DBA mice in both, the mHB and dark/light box. Analysis of microarray results revealed a list of 60 genes differentially regulated by chronic paroxetine treatment. Preproenkephalin 1 and inhibin beta-A showed the highest level of transcriptional change. Furthermore, a number of candidates involved in neuroplasticity/neurogenesis emerged (e.g., Bdnf, Gfap, Vim, Sox11, Egr1, Stat3). Seven selected candidates were confirmed by in situ hybridization. Additional immunofluorescence colocalization studies of GFAP and vimentin showed more positive cells to be detected in long-term paroxetine-treated DBA mice. Conclusion Candidate genes identified in the current study using a mouse strain validated for its responsiveness to long-term paroxetine treatment add, in our opinion, to unraveling the mechanism of action of paroxetine as a representative for SSRIs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available