4.4 Article

Acute clozapine exposure in vivo induces lipid accumulation and marked sequential changes in the expression of SREBP, PPAR, and LXR target genes in rat liver

Journal

PSYCHOPHARMACOLOGY
Volume 203, Issue 1, Pages 73-84

Publisher

SPRINGER
DOI: 10.1007/s00213-008-1370-x

Keywords

Antipsychotic; Clozapine; Energy metabolism; Gene expression; Lipid; Rat; RT-PCR

Ask authors/readers for more resources

Several antipsychotic drugs (APDs) have high propensity to induce weight gain and dyslipidemia in patients, with clozapine and olanzapine as the most potent drugs. These lipid-related effects have been attributed to drug-mediated blockade or antagonism of histamine H1 and serotonin 5-HT2 receptors as well as activation of hypothalamic AMP-activated protein kinase. We recently showed that APDs activate lipid biosynthesis in cultured liver cells through stimulation of the sterol regulatory element-binding protein (SREBP) transcription factors. The objective of the study was to search for clozapine-related lipogenic effects in peripheral tissues in vivo using rat liver as target organ. Adult female Sprague-Dawley rats were administered single intraperitoneal injections of clozapine (25 and 50 mg/kg). Hepatic lipid levels were measured during a 48-h time course. Real-time quantitative PCR was used to analyze expression of genes involved in lipid biosynthesis, oxidation, efflux, and lipolysis. We identified an initial up-regulation of central lipogenic SREBP target genes, followed by a marked and sustained down-regulation. We also observed a sequential transcriptional response for fatty acid beta-oxidation and cholesterol efflux genes, normally controlled by the peroxisome proliferator activated receptor alpha and liver X receptor alpha transcription factors, and also down-regulation of genes encoding major lipases. The transcriptional responses were associated with a significant accumulation of triacylglycerol, phospholipids, and cholesterol in the liver. These results demonstrate that acute clozapine exposure affects SREBP-regulated lipid biosynthesis as well as other lipid homeostasis pathways. We suggest that such drug-induced effects on lipid metabolism in peripheral tissues are relevant for the metabolic adverse effects associated with clozapine and possibly other APDs.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available