4.4 Review

Cell-to-cell trafficking of RNA and RNA silencing through plasmodesmata

Journal

PROTOPLASMA
Volume 248, Issue 1, Pages 101-116

Publisher

SPRINGER WIEN
DOI: 10.1007/s00709-010-0225-6

Keywords

Movement protein; Non-cell autonomous; Plasmodesmata; Spread of RNA silencing; RNA trafficking; Small RNA

Funding

  1. WCU (World Class University) program [R33-10002]
  2. Ministry of Education, Science and Technology [2009-0066339]

Ask authors/readers for more resources

Plasmodesmata (PD) are plasma membrane-lined cytoplasmic channels that cross the cell wall and establish symplasmic continuity between neighboring cells in plants. Recently, a wide range of cellular RNAs (including mRNAs and small RNAs (sRNAs)) have been reported to move from cell to cell through PD trafficking pathways. sRNAs are key molecules that function in transcriptional and post-transcriptional RNA silencing, which is a gene expression regulatory mechanism that is conserved among eukaryotes and is important for protection against invading nucleic acids (such as viruses and transposons) and for developmental and physiological regulation. One of the most intriguing aspects of RNA silencing is that it can function either cell autonomously or non-cell autonomously in post-transcriptional RNA silencing pathways. Although the mechanisms underlying cell-to-cell trafficking of RNA and RNA silencing signals are not fully understood, the movement of specific RNAs seems to play a critical role in cell-to-cell and long-distance regulation of gene expression, thereby coordinating growth and developmental processes, gene silencing, and stress responses. In this review, we summarize the current knowledge regarding cell-to-cell trafficking of RNA molecules (including small RNAs), and we discuss potential molecular mechanisms of cell-to-cell trafficking that are mediated by complex networks.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available