4.0 Article

Physiological and Molecular Evidence that Environmental Changes Elicit Morphological Interconversion in the Model Diatom Phaeodactylum tricornutum

Journal

PROTIST
Volume 162, Issue 3, Pages 462-481

Publisher

ELSEVIER GMBH, URBAN & FISCHER VERLAG
DOI: 10.1016/j.protis.2011.02.002

Keywords

Diatoms; life cycle; morphotypes; phenotypic plasticity; stress acclimation; time-lapse microscopy

Categories

Funding

  1. Agence Nationale de la Recherche (ANR)
  2. University of Cadiz (Plan propio de ayudas a la investigacion)
  3. Andalusian regional government (Ayudas PAI a los Grupos de Investigacion) [RNM-0214]
  4. Spanish Ministerio de Ciencia e Innovacion [CTM2008-01198]

Ask authors/readers for more resources

Over the last decades Phaeodactylum tricornutum has become a model to study diatom biology at the molecular level. Cells have the peculiarity to be pleiomorphic and it is thought that this character is triggered by culture conditions, although few quantitative studies have been performed and nothing is known at the molecular level. Our aim was to quantify the effect of growth conditions on cell morphology of different P. tricornutum strains by quantitative microscopy, cellular imaging, and non-targeted transcriptomics. We show that morphotype changes can be regulated by changing culture conditions, depending on the strain, and show a common trend of increased oval cell abundance as a response to stress. Examination of expressed sequence tags (ESTs) from triradiate cells infers the importance of osmoregulation in the maintenance of this morphotype, whereas ESTs derived from oval cells grown in hyposaline and low temperature conditions show a predominance of genes encoding typical components of stress pathways, especially in signaling, cell homeostasis and lipid metabolism. This work contributes to better understand the importance of the unique capability of morphotype conversion in P. tricornutum and its relevance in acclimation to changing environmental conditions. (C) 2011 Elsevier GmbH. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.0
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available