4.5 Article

Proteomic analysis of Bacillus subtilis strains engineered for improved production of heterologous proteins

Journal

PROTEOMICS
Volume 13, Issue 22, Pages 3298-3308

Publisher

WILEY
DOI: 10.1002/pmic.201300183

Keywords

Anthrax protective antigen; Biomedicine; Gene deletion; Proteases; Recombinant protein; Secretion

Funding

  1. U.K. Department of Trade and Industry LINK Applied Genomics Grant [APPGEN 79]
  2. European Union [LSHC-CT-2004-503468]
  3. Engineering and Physical Sciences Research Council Synthetic Biology Grant [EP/J02175X/1]
  4. EPSRC [EP/J02175X/1] Funding Source: UKRI
  5. Biotechnology and Biological Sciences Research Council [BBS/B/13799] Funding Source: researchfish

Ask authors/readers for more resources

The use of bacterial systems for recombinant protein production has advantages of simplicity, time and cost over competing systems. However, widely used bacterial expression systems (e.g. Escherichia coli, Pseudomonas fluorescens) are not able to secrete soluble proteins directly into the culture medium. This limits yields and increases downstream processing time and costs. In contrast, Bacillus spp. secrete native enzymes directly into the culture medium at grams-per-litre quantities, although the yields of some recombinant proteins are severely limited. We have engineered the Bacillus subtilis genome to generate novel strains with precise deletions in the genes encoding ten extracytoplasmic proteases that affect recombinant protein secretion, which lack chromosomal antibiotic resistance genes. The deletion sites and presence of single nucleotide polymorphisms were confirmed by sequencing. The strains are stable and were used in industrial-scale fermenters for the production of the Bacillus anthracis vaccine protein, protective antigen, the productivity of which is extremely low in the unmodified strain. We also show that the deletion of so-called quality control proteases appears to influence cell-wall synthesis, resulting in the induction of the cell-wall stress regulon that encodes another quality control protease.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available