4.5 Article

Identification of a second Nutlin-3 responsive interaction site in the N-terminal domain of MDM2 using hydrogen/deuterium exchange mass spectrometry

Journal

PROTEOMICS
Volume 13, Issue 16, Pages 2512-2525

Publisher

WILEY
DOI: 10.1002/pmic.201300029

Keywords

Allostery; Biomedicine; Cancer; Deuterium exchange; MDM2; p53

Funding

  1. GACR [P206/12/G151]
  2. European Regional Development Fund
  3. State Budget of the Czech Republic (RECAMO) [CZ.1.05/2.1.00/03.0101]
  4. CRUK
  5. BBSRC
  6. [UNCE_204025/2012]

Ask authors/readers for more resources

MDM2 is a multidomain protein that functions as an E3 ubiquitin ligase, transcription repressor, mRNA-binding protein, translation factor, and molecular chaperone. The small molecule Nutlin-3 has been engineered to bind to the N-terminal hydrophobic pocket domain of MDM2. This binding of Nutlin-3 has two consequences: (i) antagonistic effects through competitive disruption of the MDM2-p53 complex and (ii) agonist effects that allosterically stabilize MDM2 protein-protein interactions that increase p53 ubiquitination as well as nucleophosmin deoligomerization. We present a methodology using a hydrogen/deuterium (H/D) exchange platform that measures Nutlin-3 binding to the N-terminal domain of MDM2 (MDM2(1-126)) in order to begin to develop dynamic assays that evaluate MDM2 allostery. In order to localize the regions in MDM2 being suppressed by Nutlin-3, MDM2 was incubated with the ligand and H/D amide exchange was measured after pepsin digestion. One dynamic segment containing amino acids 55-60 exhibited slower deuterium exchange after Nutlin-3 binding, reflecting ligand binding within the hydrophobic pocket. However, another dominant suppression of H/D exchange was observed in a motif from amino acids 103-107 that reflects surface hydrophobic residues surrounding the hydrophobic pocket of MDM2. In order to explore the consequences of this latter Nutlin-3 interaction site on MDM2, the Y104G and L107G mutant series was constructed. The MDM2(Y104G) and MDM2(L107G) mutants were fully active in p53 binding. However, the authentic p53-derived peptide:MDM2(Y104G) complex exhibited partial resistance to Nutlin-3 inhibition, while the p53-mimetic 12.1 peptide:MDM2(Y104G) complex retained normal Nutlin-3 responsiveness. These data reveal the existence of a second functional Nutlin-3-binding site in a surface hydrophobic patch of MDM2, flanking the hydrophobic pocket. This reveals two modes of peptide binding by MDM2 and highlights the utility of H/D exchange as an assay for measuring allosteric effects in MDM2.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available