4.8 Article

Correlation Between Microstructure and Na Storage Behavior in Hard Carbon

Journal

ADVANCED ENERGY MATERIALS
Volume 6, Issue 1, Pages -

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/aenm.201501588

Keywords

-

Funding

  1. RS2E (Reseau sur le Stockage Electrochimique de l'Energie) network through the ANR project Storex [ANR-10-LABX-76-01]

Ask authors/readers for more resources

Hard carbons are considered among the most promising anode materials for Na-ion batteries. Understanding their structure is of great importance for optimizing their Na storage capabilities and therefore achieving high performance. Herein, carbon nanofibers (CNFs) are prepared by electrospinning and their microstructure, texture, and surface functionality are tailored through carbonization at various temperatures ranging from 650 to 2800 degrees C. Stepwise carbonization gradually removes the heteroatoms and increases the graphitization degree, enabling us to monitor the corresponding electrochemical performance for establishing a correlation between the CNFs characteristics and Na storage behavior. Outstandingly, it is found that for CNFs carbonized at above 2000 degrees C, a single voltage Na uptake plateau at similar or equal to 0.1 V with a capacity of similar or equal to 200 mAh g(-1). This specific performance may be nested in the higher degree of graphitization, lower active surface area, and different porous texture of the CNFs at such temperatures. It is demonstrated via the assembly of a CNF/Na2Fe2(SO4)(3) cell the benefit of such CNFs electrode for enhancing the energy density of full Na-ion cells. This finding sheds new insights in the quest for high performance carbon based anode materials.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available