4.5 Article

Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus

Journal

PROTEOMICS
Volume 8, Issue 15, Pages 3154-3163

Publisher

WILEY
DOI: 10.1002/pmic.200700974

Keywords

acid adaptation; acid stress; Lactobacillus bulgaricus; pyruvate metabolism

Funding

  1. Danone Vitapole

Ask authors/readers for more resources

Lactic acid bacteria (LAB) gradually acidify their environment through the conversion of pyruvate to lactate, an essential process to regenerate NAD(+) used during glycolysis. A clear demonstration of acidification can be found in yogurt, the product of milk fermentation by the LAB Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus, where the pH falls to 4.2. Acid adaptation therefore plays an important role in the physiology of LAB. Here we present the results of a proteomic approach to reveal cellular changes associated with acid adaptation in L. bulgaricus. These results were complemented with transcription data for selected genes to show three major effects: (i) induction of the chaperones GroES, GroEL, HrcA, GrpE, DnaK, DnaJ, ClpE, ClpP, and ClpL, and the repression of ClpC; (ii) induction of genes involved in the biosynthesis of fatty acids (fabH, accC, fabI); (iii) repression of genes involved in the mevalonate pathway of isoprenoid synthesis (mvaC, mvaS). Together with changes in the expression of other genes from the local metabolic network, these results for the first time show a coherent picture of changes in gene expression expected to result in a rerouting of pyruvate metabolism to favor fatty acid biosynthesis, and thereby affect membrane fluidity.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available