4.5 Article

Transcriptome and proteome analysis of early embryonic mouse brain development

Journal

PROTEOMICS
Volume 8, Issue 6, Pages 1257-1265

Publisher

WILEY
DOI: 10.1002/pmic.200700724

Keywords

differentiation; embryonic brain development; neural progenitor cells; transcriptome

Ask authors/readers for more resources

Mouse embryonic brain development involves sequential differentiation of multipotent progenitors into neurons and glia cells. Using microarrays and large 2-DE, we investigated the mouse brain transcriptome and proteome of embryonic days 9.5, 11.5, and 13.5. During this developmental period, neural progenitor cells shift from proliferation to neuronal differentiation. As expected, we detected numerous expression changes between all time points investigated, but interestingly, the rate of alteration remained in a similar range within 2 days of development. Furthermore, up- and down-regulation of gene products was balanced at each time point which was also seen at embryonic days 16-18. We hypothesize that during embryonic development, the rate of gene expression alteration is rather constant due to limited cellular resources such as energy, space, and free water. A similar complexity in terms of expressed genes and proteins suggests that changes in relative concentrations rather than an increase in the number of gene products dominate cellular differentiation. In general, expression of metabolism and cell cycle related gene products was down-regulated when precursor cells switched from proliferation to neuronal differentiation (days 9.5-11.5), whereas neuron specific gene products were up-regulated. A detailed functional analysis revealed their implication in differentiation related processes such as rearrangement of the actin cytoskeleton as well as Notch- and Wnt-signaling pathways.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available