4.3 Article

Specific potassium ion interactions facilitate homocysteine binding to betaine-homocysteine S-methyltransferase

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 82, Issue 10, Pages 2552-2564

Publisher

WILEY
DOI: 10.1002/prot.24619

Keywords

BHMT; homocysteine; potassium; crystal structure; molecular dynamics; simulations; enzyme kinetics

Funding

  1. Grant Agency of the Czech Republic [P207/10/1277, P208/12/G016]
  2. Academy of Sciences of the Czech Republic [RVO: 61388963]
  3. Illinois Agricultural Research Station [ILLU-698-388]
  4. University of Illinois Research Board
  5. USUHS [R071KB]
  6. Academy of Sciences (Praemium Academie Award), International Max-Planck Research School

Ask authors/readers for more resources

Betaine-homocysteine S-methyltransferase (BHMT) is a zinc-dependent methyltransferase that uses betaine as the methyl donor for the remethylation of homocysteine to form methionine. This reaction supports S-adenosylmethionine biosynthesis, which is required for hundreds of methylation reactions in humans. Herein we report that BHMT is activated by potassium ions with an apparent K-M for K+ of about 100 mu M. The presence of potassium ions lowers the apparent K-M of the enzyme for homocysteine, but it does not affect the apparent K-M for betaine or the apparent k(cat) for either substrate. We employed molecular dynamics (MD) simulations to theoretically predict and protein crystallography to experimentally localize the binding site(s) for potassium ion(s). Simulations predicted that K+ ion would interact with residues Asp26 and/or Glu159. Our crystal structure of BHMT bound to homocysteine confirms these sites of interaction and reveals further contacts between K+ ion and BHMT residues Gly27, Gln72, Gln247, and Gly298. The potassium binding residues in BHMT partially overlap with the previously identified DGG (Asp26-Gly27-Gly28) fingerprint in the Pfam 02574 group of methyltransferases. Subsequent biochemical characterization of several site-specific BHMT mutants confirmed the results obtained by the MD simulations and crystallographic data. Together, the data herein indicate that the role of potassium ions in BHMT is structural and that potassium ion facilitates the specific binding of homocysteine to the active site of the enzyme. (C) 2014 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available