4.3 Article

Simultaneous prediction of protein secondary structure and transmembrane spans

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 81, Issue 7, Pages 1127-1140

Publisher

WILEY
DOI: 10.1002/prot.24258

Keywords

secondary structure prediction; transmembrane span prediction; membrane proteins; protein structure prediction; ProteinDataBank

Funding

  1. NIH [R01 GM080403, R01 MH090192]
  2. NSF [0742762]
  3. Div Of Molecular and Cellular Bioscience
  4. Direct For Biological Sciences [0742762] Funding Source: National Science Foundation

Ask authors/readers for more resources

Prediction of transmembrane spans and secondary structure from the protein sequence is generally the first step in the structural characterization of (membrane) proteins. Preference of a stretch of amino acids in a protein to form secondary structure and being placed in the membrane are correlated. Nevertheless, current methods predict either secondary structure or individual transmembrane states. We introduce a method that simultaneously predicts the secondary structure and transmembrane spans from the protein sequence. This approach not only eliminates the necessity to create a consensus prediction from possibly contradicting outputs of several predictors but bears the potential to predict conformational switches, i.e., sequence regions that have a high probability to change for example from a coil conformation in solution to an -helical transmembrane state. An artificial neural network was trained on databases of 177 membrane proteins and 6048 soluble proteins. The output is a 3 x 3 dimensional probability matrix for each residue in the sequence that combines three secondary structure types (helix, strand, coil) and three environment types (membrane core, interface, solution). The prediction accuracies are 70.3% for nine possible states, 73.2% for three-state secondary structure prediction, and 94.8% for three-state transmembrane span prediction. These accuracies are comparable to state-of-the-art predictors of secondary structure (e.g., Psipred) or transmembrane placement (e.g., OCTOPUS). The method is available as web server and for download at www.meilerlab.org. Proteins 2013; 81:1127-1140. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available