4.3 Article

Molecular dynamics study of small molecule inhibitors of the Bcl-2 family

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 79, Issue 9, Pages 2624-2636

Publisher

WILEY-BLACKWELL
DOI: 10.1002/prot.23083

Keywords

Bcl-2; obatoclax; apoptosis; Mcl-1; Bcl-xL; ABT-737; molecular dynamics; docking

Funding

  1. McGill University
  2. National Research Council of Canada

Ask authors/readers for more resources

We carried out docking and molecular dynamics simulations on ABT-737 and obatoclax, which are inhibitors of the Bcl-2 family of proteins. We modeled the binding mode of ABT-737 with Bcl-x(L), Bcl-2, and Mcl-1 and examined their dynamical behavior. We found that the binding of the chlorobiphenyl end of ABT-737 was quite stable across all three proteins. However, the phenylpiperazine linker group was dramatically more mobile in Mcl-1 compared to either Bcl-x(L) or Bcl-2. The S-phenyl group at the p4 binding site was well-anchored in Bcl-x(L) and Bcl-2 but was somewhat more mobile in Mcl-1 although the phenyl ring itself on average stayed close to the p4 binding site in Mcl-1. This greater mobility is likely due to the greater openness of the p3 and p4 binding sites on Mcl-1. The calculated binding free energies were consistent with the much weaker binding affinity of ABT-737 for Mcl-1. Obatoclax was predicted to bind at the p1 and p2 binding sites of Mcl-1 and the binding mode was quite stable during the molecular dynamics simulation with Mcl-1 wrapping around the molecule. The modeled binding mode suggests that obatoclax is able to inhibit all three proteins because it makes use of the p1 and p2 binding sites alone, which is a fairly narrow groove in all three proteins unlike the p4 binding site, which is much broader in Mcl-1.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available