4.3 Article

Predicting residue-residue contact maps by a two-layer, integrated neural-network method

Journal

PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS
Volume 76, Issue 1, Pages 176-183

Publisher

WILEY
DOI: 10.1002/prot.22329

Keywords

artificial neural networks; contact map prediction; protein structure prediction

Funding

  1. NIH [GM066049, GM085003.]

Ask authors/readers for more resources

A neural network method (SPINE-2D) is introduced to provide a sequence-based prediction of residue-residue contact maps. This method is built on the success of SPINE in predicting secondary structure, residue solvent accessibility, and backbone torsion angles via large-scale training with overfit protection and a two-layer neural network. SPINE-2D achieved a 10-fold cross-validated accuracy of 47% (+/- 2%) for top L/5 predicted contacts between two residues with sequence separation of six or more and an accuracy of 24 +/- 1% for nonlocal contacts with sequence separation of 24 residues or more. The accuracies of 23% and 26% for nonlocal contact predictions are achieved for two independent datasets of 500 proteins and 82 CASP 7 targets, respectively. A comparison with other methods indicates that SPINE-2D is among the most accurate methods for contact-map prediction. SPINE-2D is available as a webserver at http://sparks.informatics.iupui.edu.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available