4.6 Article

Observed octameric assembly of a Plasmodium yoelii peroxiredoxin can be explained by the replacement of native ball-and-socket interacting residues by an affinity tag

Journal

PROTEIN SCIENCE
Volume 22, Issue 10, Pages 1445-1452

Publisher

WILEY
DOI: 10.1002/pro.2328

Keywords

malaria; structural genomics; protein structure; artifact; peroxidase; dimer interface; radiation damage; hyperoxidation

Funding

  1. NIH [R01 GM050389]
  2. American Heart Association Postdoctoral Fellowship

Ask authors/readers for more resources

Peroxiredoxins (Prxs) are ubiquitous and efficient antioxidant enzymes crucial for redox homeostasis in most organisms, and are of special importance for disease-causing parasites that must protect themselves against the oxidative weapons of the human immune system. Here, we describe reanalyses of crystal structures of two Prxs from malaria parasites. In addition to producing improved structures, we provide normalizing explanations for features that had been noted as unusual in the original report of these structures (Qiu et al., BMC Struct Biol 2012;12:2). Most importantly, we provide evidence that the unusual octameric assembly seen for Plasmodium yoelii Prx1a is not physiologically relevant, but arises because the structure is not of authentic P. yoelii Prx1a, but a variant we designate PyPrx1a(N*) that has seven native N-terminal residues replaced by an affinity tag. This N-terminal modification disrupts a previously unrecognized, hydrophobic ball-and-socket interaction conserved at the B-type dimer interface of Prx1 subfamily enzymes, and is accommodated by a fascinating two-residue -slip type register shift in the -strand association at a dimer interface. The resulting change in the geometry of the dimer provides a simple explanation for octamer formation. This study illustrates how substantive impacts can occur in protein variants in which native residues have been altered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available