4.6 Article

Protein unfolding and degradation by the AAA plus Lon protease

Journal

PROTEIN SCIENCE
Volume 21, Issue 2, Pages 268-+

Publisher

WILEY-BLACKWELL
DOI: 10.1002/pro.2013

Keywords

protein unfolding; AAA plus proteolytic machine; ATP-dependent denaturation; ranking unfolding power

Funding

  1. Marie Curie Grant [PIRG-GA-2009-256401]
  2. BSF [2009405]
  3. NIH [AI-15706, AI-16892]

Ask authors/readers for more resources

AAA+ proteases employ a hexameric ring that harnesses the energy of ATP binding and hydrolysis to unfold native substrates and translocate the unfolded polypeptide into an interior compartment for degradation. What determines the ability of different AAA+ enzymes to unfold and thus degrade different native protein substrates is currently uncertain. Here, we explore the ability of the E. coli Lon protease to unfold and degrade model protein substrates beginning at N-terminal, C-terminal, or internal degrons. Lon has historically been viewed as a weak unfoldase, but we demonstrate robust and processive unfolding/degradation of some substrates with very stable protein domains, including mDHFR and titinI27. For some native substrates, Lon is a more active unfoldase than related AAA+ proteases, including ClpXP and ClpAP. For other substrates, this relationship is reversed. Thus, unfolding activity does not appear to be an intrinsic enzymatic property. Instead, it depends on the specific protease and substrate, suggesting that evolution has diversified rather than optimized the protein unfolding activities of different AAA+ proteases.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available