4.6 Article

Human C3a and C3a desArg anaphylatoxins have conserved structures, in contrast to C5a and C5a desArg

Journal

PROTEIN SCIENCE
Volume 22, Issue 2, Pages 204-212

Publisher

WILEY
DOI: 10.1002/pro.2200

Keywords

complement system; anaphylatoxins; inflammation; C3a; C3a desArg; innate immunity; X-ray structures

Funding

  1. DFG [CRC587]
  2. Novo-Nordisk Foundation

Ask authors/readers for more resources

Complement is a part of innate immunity that has a critical role in the protection against microbial infections, bridges the innate with the adaptive immunity and initiates inflammation. Activation of the complement, by specific recognition of molecular patterns presented by an activator, for example, a pathogen cell, in the classical and lectin pathways or spontaneously in the alternative pathway, leads to the opsonization of the activator and the production of pro-inflammatory molecules such as the C3a anaphylatoxin. The biological function of this anaphylatoxin is regulated by carboxypeptidase B, a plasma protease that cleaves off the C-terminal arginine yielding C3a desArg, an inactive form. While functional assays demonstrate strikingly different physiological effects between C3a and C3a desArg, no structural information is available on the possible conformational differences between the two proteins. Here, we report a novel and simple expression and purification protocol for recombinant human C3a and C3a desArg anaphylatoxins, as well as their crystal structures at 2.3 and 2.6 angstrom, respectively. Structural analysis revealed no significant conformational differences between the two anaphylatoxins in contrast to what has been reported for C5a and C5a desArg. We compare the structures of different anaphylatoxins and discuss the relevance of their observed conformations to complement activation and binding of the anaphylatoxins to their cognate receptors.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available