4.6 Article

Multiple binding modes for palmitate to barley lipid transfer protein facilitated by the presence of proline 12

Journal

PROTEIN SCIENCE
Volume 22, Issue 1, Pages 56-64

Publisher

WILEY
DOI: 10.1002/pro.2184

Keywords

lipid transfer protein; ligand binding; lipid binding; palmitic acid; molecular dynamics simulation; GROMOS; NMR spectroscopy; Proline; internal cavity

Funding

  1. Swiss National Science Foundation [200020-137827]
  2. National Competence Center for Research (NCCR) in Structural Biology
  3. European Research Council [228076]
  4. ETH
  5. Swiss National Science Foundation (SNF) [200020_137827] Funding Source: Swiss National Science Foundation (SNF)
  6. European Research Council (ERC) [228076] Funding Source: European Research Council (ERC)

Ask authors/readers for more resources

Molecular dynamics simulations have been used to characterise the binding of the fatty acid ligand palmitate in the barley lipid transfer protein 1 (LTP) internal cavity. Two different palmitate binding modes (1 and 2), with similar proteinligand interaction energies, have been identified using a variety of simulation strategies. These strategies include applying experimental proteinligand atomatom distance restraints during the simulation, or protonating the palmitate ligand, or using the vacuum GROMOS 54B7 force-field parameter set for the ligand during the initial stages of the simulations. In both the binding modes identified the palmitate carboxylate head group hydrogen bonds with main chain amide groups in helix A, residues 4 to 19, of the protein. In binding mode 1 the hydrogen bonds are to Lys 11, Cys 13, and Leu 14 and in binding mode 2 to Thr 15, Tyr 16, Val 17, Ser 24 and also to the OH of Thr 15. In both cases palmitate binding exploits irregularity of the intrahelical hydrogen-bonding pattern in helix A of barley LTP due to the presence of Pro 12. Simulations of two variants of barley LTP, namely the single mutant Pro12Val and the double mutant Pro12Val Pro70Val, show that Pro 12 is required for persistent palmitate binding in the LTP cavity. Overall, the work identifies key MD simulation approaches for characterizing the details of proteinligand interactions in complexes where NMR data provide insufficient restraints.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available