4.6 Article

The family of toxin-related ecto-ADP-ribosyltransferases in humans and the mouse

Journal

PROTEIN SCIENCE
Volume 11, Issue 7, Pages 1657-1670

Publisher

WILEY
DOI: 10.1110/ps.0200602

Keywords

ADP-ribosylation; recombinant proteins; PSI-BLAST; orthologous genes; paralogous gene; cross-species PCR; database searches

Funding

  1. NIDDK NIH HHS [R01 DK036175, R37 DK027722, DK 36173, R01 DK027722, DK 27722] Funding Source: Medline

Ask authors/readers for more resources

ADP-ribosyltransferases including toxins secreted by Vibrio cholera, Pseudomonas aerurginosa, and other pathogenic bacteria inactivate the function of human target proteins by attaching ADP-ribose onto a critical amino acid residue. Cross-species polymerase chain reaction (PCR) and database mining identified the orthologs of these ADP-ribosylating toxins in humans and the mouse. The human genome contains four functional toxin-related ADP-ribosyltransferase genes (ARTs) and two related intron-containing pseudogenes; the mouse has six functional orthologs. The human and mouse ART genes map to chromosomal regions with conserved link-a e syntery. The individual ART genes reveal highly restricted expression patterns, which are largely conserved in humans and the mouse. We confirmed the predicted extracellular location of the ART proteins by expressing recombinant ARTS in insect cells. Two human and four mouse ARTS contain the active site motif (R-S-EXE) typical of arginine-specific ADP-ribosyltransferases and exhibit the predicted enzyme activities. Two other human ARTS and their murine orthologues deviate in the active site motif and lack detectable enzyme activity. Conceivably, these ARTS may have acquired a new specificity or function. The position-sensitive iterative database search program PSI-BLAST connected the mammalian ARTS with most known bacterial ADP-ribosylating toxins. In contrast, no related open reading frames occur in the four completed genomes of lower eucaryotes (yeast, worm, fly, and mustard weed). Interestingly, these organisms also lack genes for ADP-ribosylhydrolases, the enzymes that reverse protein ADP-ribosylation. This suggests that the two enzyme families that catalyze reversible mono-ADP-ribosylation either were lost from the genomes of these nonchordata eucaryotes or were subject to horizontal gene transfer between kingdoms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available