4.6 Article

Sequence dependence of kinetics and morphology of collagen model peptide self-assembly into higher order structures

Journal

PROTEIN SCIENCE
Volume 17, Issue 6, Pages 1086-1095

Publisher

WILEY
DOI: 10.1110/ps.083441308

Keywords

triple helix; collagen; self-assembly; fibrils; peptides

Funding

  1. NCI NIH HHS [CA113863, R01 CA113863, CA085826, R01 CA085826] Funding Source: Medline
  2. NIGMS NIH HHS [R01 GM060048, GM60048] Funding Source: Medline

Ask authors/readers for more resources

The process of self-assembly of the triple-helical peptide (Pro-Hyp-Gly)(10) into higher order structure resembles the nucleation-growth mechanism of collagen fibril formation in many features, but the irregular morphology of the self-assembled peptide contrasts with the ordered fibers and networks formed by collagen in vivo. The amino acid sequence in the central region of the (Pro-Hyp-Gly)(10) peptide was varied and found to affect the kinetics of self-assembly and nature of the higher order structure formed. Single amino acid changes in the central triplet produced irregular higher order structures similar to (Pro-Hyp-Gly)(10), but the rate of self-association was markedly delayed by a single change in one Pro to Ala or Leu. The introduction of a Hyp-rich hydrophobic sequence from type IV collagen resulted in a more regular suprastructure of extended fibers that sometimes showed supercoiling and branching features similar to those seen for type IV collagen in the basement membrane network. Several peptides, where central Pro-Hyp sequences were replaced by charged residues or a nine-residue hydrophobic region from type III collagen, lost the ability to self-associate under standard conditions. The inability to self-assemble likely results from loss of imino acids, and lack of an appropriate distribution of hydrophobic/electrostatic residues. The effect of replacement of a single Gly residue was also examined, as a model for collagen diseases such as osteogenesis imperfecta and Alport syndrome. Unexpectedly, the Gly to Ala replacement interfered with self-assembly of (Pro-Hyp-Gly)(10), while the peptide with a Gly to Ser substitution self-associated to form a fibrillar structure.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available