4.6 Article

Crystal structure and mutagenic analysis of GDOsp, a gentisate 1,2-dioxygenase from Silicibacter Pomeroyi

Journal

PROTEIN SCIENCE
Volume 17, Issue 8, Pages 1362-1373

Publisher

COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT
DOI: 10.1110/ps.035881.108

Keywords

gentisate 1,2-dioxygenase; extradiol dioxygenase; mononuclear metal center; bicupin folding; long-distance communication

Ask authors/readers for more resources

Dioxygenases catalyze dioxygen incorporation into various organic compounds and play a key role in the complex degradation pathway of mono- and polycyclic aromatic and hetero- aromatic compounds. Here we report the crystal structure of gentisate 1,2- dioxygenase from Silicibacter pomeroyi ( GDOsp) at a 2.8 A resolution. The enzyme possessed a conserved three- dimensional structure of the bicupin family, forming a homotetramerization. However, each subunit of GDOsp unusually contained two ferrous centers that were located in its two homologous cupin domains, respectively. Further mutagenic analysis indicated that the enzyme activity of GDOsp depends on the microenvironment in both metal- binding sites. Moreover, homologous structural comparison and functional study on GDOsp variants unveiled a group of functionally essential residues and suggested that the active site of the enzyme is located in the amino- terminal domain, but could be influenced by changes in the carboxyl domain. Therefore, GDOsp may provide a working model for studying long- distance communication within a protein ( or its complex).

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available