4.1 Article

Computationally designed libraries for rapid enzyme stabilization

Journal

PROTEIN ENGINEERING DESIGN & SELECTION
Volume 27, Issue 2, Pages 49-58

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzt061

Keywords

enzyme stability; in silico design; in silico screening; protein stability engineering; thermostability

Funding

  1. European Union [KBBE-2011-5, 289646, KBBE-2007-3-3-05, 222625]
  2. NWO (Netherlands Organization for Scientific Research) through an ECHO grant

Ask authors/readers for more resources

The ability to engineer enzymes and other proteins to any desired stability would have wide-ranging applications. Here, we demonstrate that computational design of a library with chemically diverse stabilizing mutations allows the engineering of drastically stabilized and fully functional variants of the mesostable enzyme limonene epoxide hydrolase. First, point mutations were selected if they significantly improved the predicted free energy of protein folding. Disulfide bonds were designed using sampling of backbone conformational space, which tripled the number of experimentally stabilizing disulfide bridges. Next, orthogonal in silico screening steps were used to remove chemically unreasonable mutations and mutations that are predicted to increase protein flexibility. The resulting library of 64 variants was experimentally screened, which revealed 21 (pairs of) stabilizing mutations located both in relatively rigid and in flexible areas of the enzyme. Finally, combining 1012 of these confirmed mutations resulted in multi-site mutants with an increase in apparent melting temperature from 50 to 85C, enhanced catalytic activity, preserved regioselectivity and a 250-fold longer half-life. The developed Framework for Rapid Enzyme Stabilization by Computational libraries (FRESCO) requires far less screening than conventional directed evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available