4.1 Article

Stability engineering of scFvs for the development of bispecific and multivalent antibodies

Journal

PROTEIN ENGINEERING DESIGN & SELECTION
Volume 23, Issue 7, Pages 549-557

Publisher

OXFORD UNIV PRESS
DOI: 10.1093/protein/gzq028

Keywords

antibody therapeutics; bispecific antibodies; protein engineering; protein stability; scFv

Ask authors/readers for more resources

Single-chain Fvs (scFvs) are commonly used building blocks for creating engineered diagnostic and therapeutic antibody molecules. Bispecific antibodies (BsAbs) hold particular interest due to their ability to simultaneously bind and engage two distinct targets. We describe a technology for producing stable, scalable IgG-like bispecific and multivalent antibodies based on methods for rapidly engineering thermally stable scFvs. Focused libraries of mutant scFvs were designed using a combination of sequence-based statistical analyses and structure-, and knowledge-based methods. Libraries encoding these designs were expressed in E. coli and culture supernatants-containing soluble scFvs screened in a high-throughput assay incorporating a thermal challenge prior to an antigen-binding assay. Thermally stable scFvs were identified that retain full antigen-binding affinity. Single mutations were found that increased the measured T-m of either the V-H or V-L domain by as much as 14 degrees C relative to the wild-type scFv. Combinations of mutations further increased the T-m by as much as an additional 12 degrees C. Introduction of a stability-engineered scFv as part of an IgG-like BsAb enabled scalable production and purification of BsAb with favorable biophysical properties.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available