4.4 Article

Intratumoral Conversion of Adrenal Androgen Precursors Drives Androgen Receptor-Activated Cell Growth in Prostate Cancer More Potently Than De Novo Steroidogenesis

Journal

PROSTATE
Volume 73, Issue 15, Pages 1636-1650

Publisher

WILEY
DOI: 10.1002/pros.22655

Keywords

androgen-independent prostate cancer; androgen-responsive genes; real-time RT-PCR; proliferation; precursors of testosterone

Funding

  1. Erasmus MC (MRace)

Ask authors/readers for more resources

BACKGROUNDDespite an initial response to hormonal therapy, patients with advanced prostate cancer (PC) almost always progress to castration-resistant disease (CRPC). Although serum testosterone (T) is reduced by androgen deprivation therapy, intratumoral T levels in CRPC are comparable to those in prostate tissue of eugonadal men. These levels could originate from intratumoral conversion of adrenal androgens and/or from de novo steroid synthesis. However, the relative contribution of de novo steroidogenesis to AR-driven cell growth is unknown. METHODSThe relative contribution of androgen biosynthetic pathways to activate androgen receptor (AR)-regulated cell growth and expression of PSA, FKBP5, and TMPRSS2 was studied at physiologically relevant levels of adrenal androgen precursors and intermediates of de novo androgen biosynthesis in human prostate cancer cell lines, PC346C, VCaP, and LNCaP. RESULTSIn PC346C and VCaP, responses to pregnenolone and progesterone were absent or minimal, while large effects of adrenal androgen precursors were found. VCaP CRPC clones overexpressing CYP17A1 did not acquire an increased ability to use pregnenolone or progesterone to activate AR. In contrast, all precursors stimulated growth and gene expression in LNCaP cells, presumably resulting from the mutated AR in these cells. CONCLUSIONSOur data indicate that at physiological levels of T precursors PC cells can generally convert adrenal androgens, while de novo steroidogenesis is not generally possible in PC cells and is not able to support AR transactivation and PC growth. Prostate 73: 1636-1650, 2013. (c) 2013 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available