4.2 Review

A synaptogenic amide N-docosahexaenoylethanolamide promotes hippocampal development

Journal

PROSTAGLANDINS & OTHER LIPID MEDIATORS
Volume 96, Issue 1-4, Pages 114-120

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.prostaglandins.2011.07.002

Keywords

N-Docosahexaenoylethanolamide; Synaptamide; DHA; Hippocampus; Neuron; Anandamide; N-Docosahexaenoyl-amino acylamide

Funding

  1. Intramural NIH HHS [ZIA AA000284-20] Funding Source: Medline

Ask authors/readers for more resources

Docosahexaenoic acid (DHA). the n-3 essential fatty acid that is highly enriched in the brain, increases neurite growth and synaptogenesis in cultured mouse fetal hippocampal neurons. These cellular effects may underlie the DHA-induced enhancement of hippocampus-dependent learning and memory functions. We found that N-docsahexaenoylethanolamide (DEA), an ethanolamide derivative of DHA, is a potent mediator for these actions. This is supported by the observation that DHA is converted to DEA by fetal mouse hippocampal neuron cultures and a hippocampal homogenate, and DEA is present endogenously in the mouse hippocampus. Furthermore, DEA stimulates neurite growth and synaptogenesis at substantially lower concentrations than DHA, and it enhances glutamatergic synaptic activities with concomitant increases in synapsin and glutamate receptor subunit expression in the hippocampal neurons. These findings suggest that DEA, an ethanolamide derivative of DHA, is a synaptogenic factor, and therefore we suggest utilizing the term 'synaptamide'. This brief review summarizes the neuronal production and actions of synaptamide and describes other N-docosahexaenoyl amides that are present in the brain. Published by Elsevier Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available