4.8 Article

Correlation of Electronic Structure with Catalytic Activity: H2-D2 Exchange across CuxPd1-x Composition Space

Journal

ACS CATALYSIS
Volume 5, Issue 5, Pages 3137-3147

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/cs501586t

Keywords

hydrogen; palladium; alloys; electronic structure; catalysis; membranes; adsorption

Funding

  1. RES [DE-FE0004000]
  2. DOE Office of Science Early Career Research program [DE-SC0004031]
  3. National Science Foundation [CBET 1033804]
  4. U.S. Department of Energy (DOE) [DE-SC0004031] Funding Source: U.S. Department of Energy (DOE)

Ask authors/readers for more resources

The relationship between alloy catalyst activity and valence band electronic structure has been investigated experimentally across a broad, continuous span of CuxPd1-x composition space. CuxPd1-x composition spread alloy films (CSAFs) were used as catalyst libraries with a 100 channel microreactor to measure the H-2-D-2 exchange kinetics over a temperature range of 333-593 K at 100 discrete CuxPd1-x compositions spanning the range x = 0.30-0.97. The H-2-D-2 exchange activity exhibits a monotonic decrease over the composition range x = 0.30-0.97. A steady state, microkinetic model was used to estimate the energy barriers to dissociative H-2 adsorption, Delta E-ads(double dagger), and recombinative H-2 desorption, Delta E-des(double dagger), as functions of alloy composition, x. Their values fall in the ranges Delta E-ads(double dagger)(x) = 0.15 to 0.45 eV and Delta E-des(double dagger) (x) = 0.55-0.65 eV. Spatially resolved UV photoemission spectra were obtained from the CuxPd1-x CSAF and used to estimate the average energy of the filled states of the valence band as a function of alloy composition, epsilon(v)(x). The energy of the v-band center shifted monotonically from epsilon(v) = -3.3 to -3.9 eV across the composition range x = 0.30-0.97. This monotonic shift and its magnitude were corroborated by DFT calculations. The correlation of Delta E-ads(double dagger)(x) with epsilon(v)(x) across alloy composition space yields Delta E-ads(double dagger)(epsilon(v)) which decreases as the v-band energy shifts toward the Fermi level.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available