4.8 Review

Advanced polyimide materials: Syntheses, physical properties and applications

Journal

PROGRESS IN POLYMER SCIENCE
Volume 37, Issue 7, Pages 907-974

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.progpolymsci.2012.02.005

Keywords

Polyimide; Synthesis; Physical properties; Applications

Funding

  1. National Science Council
  2. Ministry of Education, The Republic of China

Ask authors/readers for more resources

Polyimides rank among the most heat-resistant polymers and are widely used in high temperature plastics, adhesives, dielectrics, photoresists, nonlinear optical materials, membrane materials for separation, and Langmuir-Blodgett (LB) films, among others. Additionally, polyimides are used in a diverse range of applications, including the fields of aerospace, defense, and opto-electronics; they are also used in liquid crystal alignments, composites, electroluminescent devices, electrochromic materials, polymer electrolyte fuel cells, polymer memories, fiber optics, etc. Polyimides derived from monomers with noncoplanar (kink, spiro, and cardo structures), cyclic aliphatic, bulky, fluorinated, hetero, carbazole, perylene, chiral, non-linear optical and unsymmetrical structures have been described. The syntheses of various monomers, including diamines and dianhydrides that have been used to make novel polyimides with unique properties, are reported in this review. Polyimides, with tailored functional groups and dendritic structures have allowed researchers to tune the properties and applications of this important family of high-temperature polymers. The synthesis, physical properties and applications of advanced polyimide materials are described. (C) 2012 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available