4.8 Article

Two-dimensional magnetotransport in a black phosphorus naked quantum well

Journal

NATURE COMMUNICATIONS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms8702

Keywords

-

Funding

  1. NSERC
  2. CIFAR
  3. FRQNT
  4. RQMP
  5. CRC program
  6. NSF [DMR-0084173]
  7. State of Florida
  8. DOE

Ask authors/readers for more resources

Black phosphorus (bP) is the second known elemental allotrope with a layered crystal structure that can be mechanically exfoliated to atomic layer thickness. Unlike metallic graphite and semi-metallic graphene, bP is a semiconductor in both bulk and few-layer form. Here we fabricate bP-naked quantum wells in a back-gated field effect transistor geometry with bP thicknesses ranging from 6 +/- 1 nm to 47 +/- 1 nm. Using a polymer encapsulant, we suppress bP oxidation and observe field effect mobilities up to 900 cm(2)V(-1)s(-1) and on/off current ratios exceeding 10(5). Shubnikov-de Haas oscillations observed in magnetic fields up to 35 T reveal a 2D hole gas with Schrodinger fermion character in a surface accumulation layer. Our work demonstrates that 2D electronic structure and 2D atomic structure are independent. 2D carrier confinement can be achieved without approaching atomic layer thickness, advantageous for materials that become increasingly reactive in the few-layer limit such as bP.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available