4.7 Review

Synthesis and characterization of corrosion protective polyurethanefattyamide/silica hybrid coating material

Journal

PROGRESS IN ORGANIC COATINGS
Volume 73, Issue 1, Pages 112-117

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.porgcoat.2011.09.007

Keywords

Linseed oil; Organic-inorganic hybrid; Coatings; Anticorrosive

Funding

  1. CSIR (New Delhi, India) [13(8385-A)/Pool/2010, 13(8464-A)/2011-Pool]

Ask authors/readers for more resources

For the first time, polyurethanefattyamide/silica [PULFAS] based organic-inorganic hybrid coatings were prepared at ambient temperature to combat the corrosion of mild steel. The coating material was synthesized in situ by the reaction of Linseed diol fattyamide (HELA) and tetraethoxy orthosilicate (TEOS, 20-30 phr) at 80 degrees C, followed by the addition of calculated amount of toluene-2,4-diisocyanate (TDI) in the reaction setup at room temperature. The formation of PULFAS was confirmed by FTIR spectral technique while morphology of the same was observed by optical micrography. The physico-mechanical properties of PULFAS coatings such as scratch hardness, impact resistance, bend test and gloss along with coating thickness were evaluated by standard methods. Thermal stability of PULFAS was investigated by thermogravimetric analysis (TGA). Curing behavior of PULFS was studied by differential scanning calorimetry (DSC). Corrosion resistance performance of the hybrid coatings was evaluated by potentio dynamic polarization (POP) measurements in different corrosive environments at room temperature. Salt spray test of PULFAS coatings was carried out in 3.5 wt% NaCl solution. The corrosion protection mechanism of the same was also investigated. The results showed that PULFAS coatings exhibit good physico-mechanical properties with excellent performance against the corrosive environments. (C) 2011 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available