4.7 Review

Conducting polymer coated carbon surfaces and biosensor applications

Journal

PROGRESS IN ORGANIC COATINGS
Volume 66, Issue 4, Pages 337-358

Publisher

ELSEVIER SCIENCE SA
DOI: 10.1016/j.porgcoat.2009.08.014

Keywords

Electrocoating; Carbon fiber microelectrode; Carbon paste electrode; Polycarbazole; Biosensor; Dopamine

Ask authors/readers for more resources

This review article focuses on several approaches in the characterization and modification of carbon surfaces with electrocoated thin films which has been realized by recent progress in experimental methods. Electropolymerization and electrocopolymerization of pi-conjugated polymers (pyrrole, carbazole, N-vinylcarbazole and aniline) onto carbon surfaces are reviewed with 348 references. Particular emphasis is placed on the recent nanoscale surface characterization techniques applied to the resulting electrocoated polymers onto carbon fibers (i.e., scanning electron microscopy (SEM), cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), focused ion beam-secondary ion mass spectroscopy (FIB-SIMS), Fourier transformed infrared spectroscopy (reflectance-FTIR), and Raman spectroscopic measurements). The electrochemical deposition of conducting polymers on carbon substrates has been studied with the goal of improving the properties of these polymers so as to use them as electrodes in different applications: batteries, sensors, capacitors or electrochromic displays. The synthesis and characterization of high surface area nanomaterials, such as nanotubes and nanowires, have been carried out extensively in the past few years. The electrochemical doped process of polypyrrole, polycarbazole, poly(N-vinylcarbazole) and polyaniline thin films on carbon surfaces in different solutions has been investigated in this review article. We suggest guidelines that can be applied to a range of in vivo microsensor applications for evaluation of analyte identification and improvement of selectivity. Various modified materials have been used on carbon-based electrodes to investigate and detect biologically important redox species, which biosensors represent a broad area of technology useful for environmental, food monitoring and clinical applications. (C) 2009 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available