4.8 Article

The pervasive role of biological cohesion in bedform development

Journal

NATURE COMMUNICATIONS
Volume 6, Issue -, Pages -

Publisher

NATURE PORTFOLIO
DOI: 10.1038/ncomms7257

Keywords

-

Funding

  1. UK Natural Environment Research Council (NERC) under the 'COHBED' project [NE/1027223/1]
  2. Marine Alliance for Science and Technology for Scotland (MASTS)
  3. NERC [NE/I026863/1, NE/I02478X/1, NE/I024402/1] Funding Source: UKRI
  4. Natural Environment Research Council [NE/I024402/1, NE/I026863/1, noc010012, NE/I02478X/1, 1223661] Funding Source: researchfish

Ask authors/readers for more resources

Sediment fluxes in aquatic environments are crucially dependent on bedform dynamics. However, sediment-flux predictions rely almost completely on clean-sand studies, despite most environments being composed of mixtures of non-cohesive sands, physically cohesive muds and biologically cohesive extracellular polymeric substances (EPS) generated by microorganisms. EPS associated with surficial biofilms are known to stabilize sediment and increase erosion thresholds. Here we present experimental data showing that the pervasive distribution of low levels of EPS throughout the sediment, rather than the high surficial levels of EPS in biofilms, is the key control on bedform dynamics. The development time for bedforms increases by up to two orders of magnitude for extremely small quantities of pervasively distributed EPS. This effect is far stronger than for physical cohesion, because EPS inhibit sand grains from moving independently. The results highlight that present bedform predictors are overly simplistic, and the associated sediment transport processes require re-assessment for the influence of EPS.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available