4.8 Review

Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions

Journal

PROGRESS IN MATERIALS SCIENCE
Volume 60, Issue -, Pages 130-207

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.pmatsci.2013.09.002

Keywords

-

Funding

  1. Ministry of Education, Science and Culture
  2. Light Metals Education Foundation, Japan
  3. Ministry of Education and Science, Russia [OK-591/0402-13]
  4. Natural Sciences and Engineering Research Council of Canada
  5. Canadian Steel Industry Research Association

Ask authors/readers for more resources

The evolution of the new microstructures produced by two types of dynamic recrystallization is reviewed, including those brought about by severe plastic deformation (SPD). The microstructural changes taking place under these conditions and the associated mechanical behaviors are described. During the conventional discontinuous dynamic recrystallization (dDRX) that takes place at elevated temperatures, the new grains evolve by nucleation and growth in materials with low to medium stacking fault energies (SFE). On the other hand, new ultrafine grains can be produced in any material irrespective of the SFE by means of SPD at relatively low temperatures. These result from the gradual transformation of the dislocation sub-boundaries produced at low strains into ultrafine grains with high angle boundaries at large strains. This process, termed in situ or continuous dynamic recrystallization (cDRX), is still not perfectly understood. This is because many SPD methods provide data concerning the microstructural changes that take place but little information regarding the flow stress behavior. By contrast, multi-directional forging (MDF) provides both types of data concurrently. Recent studies of the deformation behavior of metals and alloys under SPD conditions, carried out using MDF as well as other SPD methods, are synthesized and the links between the microstructural and mechanical observations are examined carefully. Some models for grain formation under SPD conditions are discussed. Next, the post-dynamic recrystallization behavior, i.e. that of annealing after both dDRX and cDRX, is described. The differing annealing behaviors result from the differences in the natures of the deformed microstructures. Finally, an integrated recrystallization model for these phenomena, i.e. dynamic and static recrystallization of both the continuous and discontinuous types, is presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available