4.8 Article

General synthesis of complex nanotubes by gradient electrospinning and controlled pyrolysis

Journal

NATURE COMMUNICATIONS
Volume 6, Issue -, Pages -

Publisher

NATURE RESEARCH
DOI: 10.1038/ncomms8402

Keywords

-

Funding

  1. National Basic Research Program of China [2013CB934103, 2012CB933003]
  2. International Science and Technology Cooperation Program of China [2013DFA50840]
  3. National Natural Science Fund for Distinguished Young Scholars [51425204]
  4. National Natural Science Foundation of China [51272197, 51302203]
  5. Hubei Province Natural Science Fund for Distinguished Young Scholars [2014CFA035]
  6. Fundamental Research Funds for the Central Universities [2014-VII-007, 2014-CL-A1-01]

Ask authors/readers for more resources

Nanowires and nanotubes have been the focus of considerable efforts in energy storage and solar energy conversion because of their unique properties. However, owing to the limitations of synthetic methods, most inorganic nanotubes, especially for multi-element oxides and binary-metal oxides, have been rarely fabricated. Here we design a gradient electrospinning and controlled pyrolysis method to synthesize various controllable 1D nanostructures, including mesoporous nanotubes, pea-like nanotubes and continuous nanowires. The key point of this method is the gradient distribution of low-/middle-/high-molecular-weight poly(vinyl alcohol) during the electrospinning process. This simple technique is extended to various inorganic multi-element oxides, binary-metal oxides and single-metal oxides. Among them, Li3V2(PO4)(3), Na0.7Fe0.7Mn0.3O2 and Co3O4 mesoporous nanotubes exhibit ultrastable electrochemical performance when used in lithium-ion batteries, sodium-ion batteries and supercapacitors, respectively. We believe that a wide range of new materials available from our composition gradient electrospinning and pyrolysis methodology may lead to further developments in research on 1D systems.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available