4.8 Article

Arabidopsis uses two gluconeogenic gateways for organic acids to fuel seedling establishment

Journal

NATURE COMMUNICATIONS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms7659

Keywords

-

Funding

  1. Biotechnology and Biology Sciences Research Council [P18931, BB/G009724/1, BB/K002147/1]
  2. Isaac Newton Trust
  3. Max-Planck Gesellschaft
  4. ATC
  5. BBSRC [BB/G009724/1, BB/I002243/1, BB/K002147/1] Funding Source: UKRI
  6. Biotechnology and Biological Sciences Research Council [P19982, BB/G009724/1, BB/K002147/1, BB/I002243/1] Funding Source: researchfish

Ask authors/readers for more resources

Gluconeogenesis is a fundamental metabolic process that allows organisms to make sugars from non-carbohydrate stores such as lipids and protein. In eukaryotes only one gluconeogenic route has been described from organic acid intermediates and this relies on the enzyme phosphoenolpyruvate carboxykinase (PCK). Here we show that two routes exist in Arabidopsis, and that the second uses pyruvate, orthophosphate dikinase (PPDK). Gluconeogenesis is critical to fuel the transition from seed to seedling. Arabidopsis pck1 and ppdk mutants are compromised in seed-storage reserve mobilization and seedling establishment. Radiolabelling studies show that PCK predominantly allows sugars to be made from dicarboxylic acids, which are products of lipid breakdown. However, PPDK also allows sugars to be made from pyruvate, which is a major product of protein breakdown. We propose that both routes have been evolutionarily conserved in plants because, while PCK expends less energy, PPDK is twice as efficient at recovering carbon from pyruvate.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available