4.7 Article

Characterization of heavy metals in fly ash from municipal solid waste incinerators in Shanghai

Journal

PROCESS SAFETY AND ENVIRONMENTAL PROTECTION
Volume 88, Issue 2, Pages 114-124

Publisher

INST CHEMICAL ENGINEERS
DOI: 10.1016/j.psep.2010.01.001

Keywords

MSWI fly ash; Heavy metals; Characterization; Leaching toxicity; Specification analysis; Leaching behavior

Funding

  1. Shanghai Municipal Education Commission [J51502]

Ask authors/readers for more resources

This study aims to develop a methodology for analysis of characteristics of heavy metals in MSWI fly ash. It performed analysis of composition of heavy metals, leaching toxicity, leaching behavior as a function of pH, specification distribution and corresponding mineral components of residue derived from each step of the sequential extraction. It is found that content of heavy metals follows the sequence of Zn > Pb > Cu > Cr > As > Ni > Cd approximately Hg in both plants, and that total heavy metals account for less than 1% by mass of fly ash. Major hazardous heavy metals in fly ash are As, Cd, Hg, Pb and Zn, whose leaching ratios exceed the limit value described in hazardous waste identification standard. Measured leaching results of Cu, Pb and Zn are essentially consistent with the simulated results at pH between 0 and 13. Content of calcium-silicates, alumino-silicates and glass phases in residue derived from sequential extraction procedure increases steadily from the first step to the fifth step of the sequential extraction procedure. Cu, As, Cr, Hg, Cd, and Ni, relatively stable under strong basic conditions, can be leached out under strong acidic conditions, while Zn and Pb tend to be leached out under both strong acidic and basic conditions. (C) 2010 The Institution of Chemical Engineers. Published by Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available