4.6 Article

Identification of the microbial community responsible for thiocyanate and thiosulfate degradation in an activated sludge process

Journal

PROCESS BIOCHEMISTRY
Volume 49, Issue 7, Pages 1176-1181

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2014.03.026

Keywords

Activated sludge; Stable-isotope probing; Sulfur-oxidizing bacteria; Thiocyanate; Thiosulfate; Terminal-restriction fragment length polymorphism

Ask authors/readers for more resources

An activated sludge reactor fed with thiocyanate and/or thiosulfate was operated to examine the characteristics of its microbial community. Terminal-restriction fragment length polymorphism analyses were conducted to detect shifts in the microbial community structure corresponding to influent conditions. Then, clone library analyses and RNA-based stable-isotope probing were conducted to identify sulfur-oxidizing bacteria (SOB) responsible for the degradation of each substrate. The results suggested that there were two types of SOB: thiocyanate-degrading bacteria (that can utilize both thocyanate and thiosulfate) and thiosulfate-specific bacteria (that cannot utilize thiocyanate). Thiocyanate-degrading SOB, however, were outcompeted by thiosulfate-specific SOB when the influent contained only thiosulfate. Of the sequenced clones, Marinicella-related (with 98.7% identity) and Methylobacter-related (with 91.3% identity) bacteria were identified as thiocyanate-degrading SOB, whereas Thiomicrospira thermophila-related (with 100% identity over 903 bp) bacteria were identified as thiosulfate-specific SOB. (C) 2014 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available