4.6 Article

Mathematical modelling of the dehydrogenase catalyzed hexanol oxidation with coenzyme regeneration by NADH oxidase

Journal

PROCESS BIOCHEMISTRY
Volume 44, Issue 1, Pages 54-61

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.procbio.2008.09.007

Keywords

Coenzyme regeneration; NADH oxidase; Enzyme kinetics; Yeast; Alcohol dehydrogenase; Modelling

Funding

  1. Croatian Ministry of science, education and sport [125-1252086-2793]

Ask authors/readers for more resources

The hexanol oxidation catalyzed by alcohol dehydrogenase from baker's yeast (YADH) has been investigated with two different forms of the biocatalyst: the isolated YADH as well as the YADH in the permeabilized whole cells. It was found that in this reaction, equilibrium is shifted to the reduction side. Hence, to increase the conversion it was necessary to regenerate NAD(+). For that purpose, enzyme NADH oxidase isolated from Lactobacillus brevis was used. All biocatalysts were kinetically characterized. The overall reaction rate was described by the mathematical model which consisted of kinetics and balance equations. Due to the deactivation of NADH oxidase, only 50-58% hexanol was converted to hexanal in the batch reactor where the hexanol oxidation was catalyzed by isolated YADH. In the case of permeabilized baker's yeast cells, no enzyme deactivation occurred and 100% hexanol conversion in the hexanoic acid was detected. (C) 2008 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available