4.8 Article

Dietary restriction protects against experimental cerebral malaria via leptin modulation and T-cell mTORC1 suppression

Journal

NATURE COMMUNICATIONS
Volume 6, Issue -, Pages -

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/ncomms7050

Keywords

-

Funding

  1. NIH [DK090629, AG036712]
  2. Glenn Foundation for Medical Research
  3. Harvard School of Public Health Yerby postdoctoral fellowship
  4. Universidad Autonoma de Nuevo Leon
  5. Burroughs Wellcome Fund New Investigator in the Pathogenesis of Infectious Disease
  6. EPSRC [EP/F009429/1, EP/J016934/1, EP/F009429/2, EP/J016934/2] Funding Source: UKRI

Ask authors/readers for more resources

Host nutrition can affect the outcome of parasitic diseases through metabolic effects on host immunity and/or the parasite. Here we show that modulation of mouse immunometabolism through brief restriction of food intake (dietary restriction, DR) prevents neuropathology in experimental cerebral malaria (ECM). While no effects are detected on parasite growth, DR reduces parasite accumulation in peripheral tissues including the brain, and increases clearance in the spleen. Leptin, a host-derived adipokine linking appetite, energy balance and immune function, is required for ECM pathology and its levels are reduced upon DR. Recombinant leptin abrogates DR benefits, while pharmacological or genetic inhibition of leptin signalling protects against ECM. DR reduces mTORC1 activity in T cells, and this effect is abrogated upon leptin administration. Furthermore, mTORC1 inhibition with rapamycin prevents ECM pathology. Our results suggest that leptin and mTORC1 provide a novel mechanistic link between nutrition, immunometabolism and ECM pathology, with potential therapeutic implications for cerebral malaria.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available