4.7 Article

Scaling of sensorimotor delays in terrestrial mammals

Journal

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2018.0613

Keywords

motor control; biomechanics; neuromechanics; locomotion; nerve; muscle

Funding

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canada Discovery Grant
  3. Canada Graduate Scholarship
  4. Simon Fraser University
  5. President's PhD Scholarship

Ask authors/readers for more resources

Whether an animal is trying to escape from a predator, avoid a fall or perform a more mundane task, the effectiveness of its sensory feedback is constrained by sensorimotor delays. Here, we combine electrophysiological experiments, systematic reviews of the literature and biophysical models to determine how delays associated with the fastest locomotor reflex scale with size in terrestrial mammals. Nerve conduction delay is one contributor, and increases strongly with animal size. Sensing, synaptic and neuromuscular junction delays also contribute, and we approximate each as a constant value independent of animal size. Muscle's electromechanical and force generation delays increase more moderately with animal size than nerve conduction delay, but their total contribution exceeds that of the four neural delays. The sum of these six component delays, termed total delay, increases with animal size in proportion to M-0.21-large mammals experience total delays 17 times longer than small mammals. The slower movement times of large animals mostly offset their long delays resulting in a more modest, but perhaps still significant, doubling of their total delay relative to movement duration when compared with their smaller counterparts. Irrespective of size, sensorimotor delay is likely a challenge for all mammals, particularly during fast running.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available