4.7 Article

Trapped in the darkness of the night: thermal and energetic constraints of daylight flight in bats

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 278, Issue 1716, Pages 2311-2317

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2010.2290

Keywords

locomotion; hyperthermia; energetics; optimal foraging; Chiroptera

Funding

  1. Organization for Tropical Studies

Ask authors/readers for more resources

Bats are one of the most successful mammalian groups, even though their foraging activities are restricted to the hours of twilight and night-time. Some studies suggested that bats became nocturnal because of overheating when flying in daylight. This is because-in contrast to feathered wings of birds-dark and naked wing membranes of bats efficiently absorb short-wave solar radiation. We hypothesized that bats face elevated flight costs during daylight flights, since we expected them to alter wing-beat kinematics to reduce heat load by solar radiation. To test this assumption, we measured metabolic rate and body temperature during short flights in the tropical short-tailed fruit bat Carollia perspicillata at night and during the day. Core body temperature of flying bats differed by no more than 2 degrees C between night and daytime flights, whereas mass-specific CO2 production rates were higher by 15 per cent during daytime. We conclude that increased flight costs only render diurnal bat flights profitable when the relative energy gain during daytime is high and risk of predation is low. Ancestral bats possibly have evolved dark-skinned wing membranes to reduce nocturnal predation, but a low degree of reflectance of wing membranes made them also prone to overheating and elevated energy costs during daylight flights. In consequence, bats may have become trapped in the darkness of the night once dark-skinned wing membranes had evolved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available