4.7 Review

Reactive oxygen species as universal constraints in life-history evolution

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 276, Issue 1663, Pages 1737-1745

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2008.1791

Keywords

reactive oxygen species; life-history trade-offs; evolutionary ecology; ageing; sexual selection

Funding

  1. University of Western Australia
  2. Australian Research Council

Ask authors/readers for more resources

Evolutionary theory is firmly grounded on the existence of trade-offs between life-history traits, and recent interest has centred on the physiological mechanisms underlying such trade-offs. Several branches of evolutionary biology, particularly those focusing on ageing, immunological and sexual selection theory, have implicated reactive oxygen species (ROS) as profound evolutionary players. ROS are a highly reactive group of oxygen-containing molecules, generated as common by-products of vital oxidative enzyme complexes. Both animals and plants appear to intentionally harness ROS for use as molecular messengers to fulfil a wide range of essential biological processes. However, at high levels, ROS are known to exert very damaging effects through oxidative stress. For these reasons, ROS have been suggested to be important mediators of the cost of reproduction, and of trade-offs between metabolic rate and lifespan, and between immunity, sexual ornamentation and sperm quality. In this review, we integrate the above suggestions into one life-history framework, and review the evidence in support of the contention that ROS production will constitute a primary and universal constraint in life-history evolution.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available