4.7 Article

Unravelling the Wolbachia evolutionary role: the reprogramming of the host genomic imprinting

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 276, Issue 1666, Pages 2485-2491

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2009.0324

Keywords

Wolbachia pipientis; Zyginidia pullula; male feminization; bacterium density; DNA methylation; histology

Funding

  1. 'F.A.R.' from the University of Modena
  2. Department of Animal Biology of the University of Modena and Reggio Emilia

Ask authors/readers for more resources

Environmental factors can induce significant epigenetic changes that may also be inherited by future generations. The maternally inherited symbiont of arthropods Wolbachia pipientis is an excellent candidate as an 'environmental' factor promoting trans-generational epigenetic changes: by establishing intimate relationships with germ-line cells, epigenetic effects of Wolbachia symbiosis would be manifested as a,maternal effect', in which infection of the mother modulates the offspring phenotype. In the leafhopper Zyginidia pullula, Wolbachia feminizes genetic males, leaving them as intersexes. With the exception of male chitinous structures that are present in the last abdominal segment, feminized males display phenotypic features that are typical of females. These include ovaries that range from a typical histological architecture to an altered structure. Methylation-sensitive random amplification of polymorphic DNA profiles show that they possess a female genomic imprint. On the other hand, some rare feminized males bear testes instead of ovaries. These specimens possess a Wolbachia density approximately four orders of magnitude lower than feminized males with ovaries and maintain a male genome-methylation pattern. Our results indicate that Wolbachia infection disrupts male imprinting, which dramatically influences the expression of genes involved in sex differentiation and development, and the alteration occurs only if Wolbachia exceeds a density threshold. Thus, a new Wolbachia's role as an environmental evolutionary force, inducing epigenetic trans-generational changes, should now be considered.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available