4.7 Article

The demography of range boundaries versus range cores in eastern US tree species

Journal

PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES
Volume 276, Issue 1661, Pages 1477-1484

Publisher

ROYAL SOC
DOI: 10.1098/rspb.2008.1241

Keywords

biogeography; climate change; forest dynamics; mortality; range shifts; species migrations

Ask authors/readers for more resources

Regional species-climate correlations are well documented, but little is knownabout the ecological processes responsible for generating these patterns. Using the data from over 690 000 individual trees I estimated five demographic rates-canopy growth, understorey growth, canopy lifespan, understorey lifespan and per capita reproduction-for 19 common eastern US tree species, within the core and the northern and southern boundaries, of the species range. Most species showed statistically significant boundary versus core differences in most rates at both boundary types. Differences in canopy and understorey growth were relatively small in magnitude but consistent among species, being lower at the northern (average -17%) and higher at the southern ( average +12%) boundaries. Differences in lifespan were larger in magnitude but highly variable among species, except for a marked trend for reduced canopy lifespan at the northern boundary (average -49%). Differences in per capita reproduction were large and statistically significant for some species, but highly variable among species. The rate estimates were combined to calculate two performance indices: R(o) (a measure of lifetime fitness in the absence of competition) was consistently lower at the northern boundary (average -86%) whereas Z* (a measure of competitive ability in closed forest) showed no sign of a consistent boundary - core difference at either boundary.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available